PARTE GENERALE

Denominazione del Corso di Studio: Corso di Laurea Magistrale in Ingegneria Meccanica

Classe: LM33 – Ingegneria Meccanica

Sede: Politecnico di Bari

Dipartimento: Dipartimento di Meccanica, Matematica e Management (DMMM)

Primo anno accademico di attivazione: A.A. 2013-2014

Composizione

Prof.ssa Ilaria Giannoccaro (Presidente) in sostituzione del Prof. Giuseppe Carbone in base al D.D. n. 137 del 13 novembre 2021

Prof.ssa Claudia Barile (componente)

Prof. Antonio Boccaccio (componente)

Prof Daniele Rotolo (componente)

Prof.ssa Barbara Scozzi (componente)

Prof. Paolo Oresta (componente aggregato)

Prof. Francesco Maddalena (componente aggregato)

Sig. Alessandro De Giorgio (Rappresentante gli studenti - CdS L3 Ingegneria dei Sistemi Aerospaziali)

Sig. Francesco Filippo (Rappresentante gli studenti - CdS LM Ingegneria Gestionale magistrale)

Sig. Francesca Passiatore (Rappresentante gli studenti - CdS L3 Ingegneria Gestionale)

Sig. Andrea dell'Edera (Rappresentante gli studenti - CdS L3 Ingegneria Meccanica)

Sig. Davide Cuccovillo (Rappresentante degli studenti - CdS L3 Ingegneria Meccanica), Componente aggregato Sig.ra Grazia Morea (Rappresentante gli studenti - CdS L3 Ingegneria dei Sistemi Aerospaziali), Componente aggregato

Sig. Vincenzo Antonelli (Rappresentante gli studenti - CdS LM Mechanical Engineering), Componente aggregato Sig. Giuseppe Cirelli (Rappresentante gli studenti - CdS LM Mechanical Engineering), Componente aggregato

La componente docente della CPDS è stata nominata nel CdD n. 15 del 17 novembre 2021. La componente studentesca è stata individuata attraverso indizione di votazioni del 25 e 26 giugno 2022 e con decreto di nomina del 8 Novembre 2022. Gli studenti Sig. Vincenzo Antonelli, Sig. Giuseppe Cirelli, Sig.ra Grazia Morea sono stati aggregati alla Commissione per rappresentare adeguatamente tutti i CdS del Dipartimento.

Inoltre, sono stati consultati i Coordinatori dei CdS e altri studenti rappresentanti nel CdD del DMMM.

La Commissione si è riunita nell'anno 2023 nelle date di seguito riportate. La discussione degli argomenti indicati negli OdG ha consentito di elaborare le considerazioni riportate nei quadri delle sezioni di questa relazione.

Riunione del 24 gennaio 2023

- Esito Audit del PQA
- Predisposizione delle relazioni finali

Riunione del 6 febbraio 2023

- Parere su attivazione del nuovo CdS a Taranto in Ingegneria Industriale e dei Sistemi Navali
- Calendario prossime riunioni CPDS A.A. 2022-23

Riunione del 28 giugno 2023

- Redazione della scheda di monitoraggio Analisi della SUA CDS 2022
- Aggiornamento della scheda di verifica azioni di miglioramento dei CDS (Allegato 2)

	e del 15 novembre 2023
•	Avvio attività per la relazione annuale;
•	Analisi delle fonti documentali disponibili e dei dati
•	Organizzazione dei lavori
Riunione	e del 4 dicembre 2023
•	Discussione delle bozze delle relazioni della CPDS
Riunione	e del 14 dicembre 2023
•	Discussione delle bozze delle relazioni della CPDS
Riunione	e del 26 gennaio 2024
•	Esito Audit del PQA
•	Predisposizione delle relazioni finali

PARTE SPECIFICA PER I CDS (Corso di Laurea Magistrale in Ingegneria Meccanica LM33)

SEZIONE A . ANALISI E PROPOSTE SU GESTIONE E UTILIZZO DEI QUESTIONARI RELATIVI ALLA SODDISFAZIONE DEGLI STUDENTI

ANALISI DELLA SITUAZIONE

1.1. ANALISI DELLA SITUAZIONE: livello di soddisfazione studenti presenti in aula (Opinion Week) e livello di soddisfazione studenti frequentanti (complessivo)

Il CdS ha preso in carico i rilievi del NdV effettuando un'analisi delle OPIS. Seguendo le raccomandazioni del NdV è stata realizzata un Opinion week per raccogliere le opinioni degli studenti e il Direttore/Coordinatore hanno invitato gli studenti a partecipare, sottolineando l'importanza del processo AQ. Si precisa, inoltre, che ulteriori rilevazioni di opinione sono offerte personalmente dal Coordinatore di corso di studio, che ha destinato diverse ore di ricevimento dedicato, e dal Direttore di dipartimento i quali raccolgono le problematiche direttamente degli studenti. In tali circostanze vengono affrontate e risolte criticità circa la scelta di esami, suggerimenti sulle iscrizioni degli studenti lavoratori, e problematiche specifiche connesse ai singoli studenti. L'efficacia di tali processi viene verificata dalla CPDS mediante interlocuzioni con i singoli docenti coinvolti o dai verbali del CdS. In maniera specifica, già in occasione del Riesame Ciclico si fa riferimento alla presa in carico da parte del CdS delle criticità emerse dalla CPIS

L'analisi eseguita sulle rilevazioni nell'A.A. 2022-2023 rileva che nessuno dei corsi ha ottenuto una valutazione complessiva negativa (somma di "decisamente no" e "più no che sì" > 25%).

La percentuale di risposte positive tra i parametri (somma di "decisamente sì" e "più sì che no") varia fra un minimo di 76% (per quanto riguarda il parametro CAR) ed un massimo di 94% (rilevato sui parametri ORA e COE). Globalmente, quindi, i valori dei parametri sono ampiamente positivi, ad indicare che è considerata efficace la didattica dei docenti che riescono a stimolare l'interesse degli studenti, in perfetta analogia a quanto riportato anche lo scorso anno. Per un'analisi più dettagliata si rimanda all'Appendice.

1.2. ANALISI DELLA SITUAZIONE: livello di soddisfazione studenti non presenti in aula (post Opinion Week) e livello di soddisfazione studenti non frequentanti (complessivo)

Nel caso degli studenti non frequentanti, i dati OPIS disponibili permettono di valutare il livello di soddisfazione specifico solo in merito alla reperibilità del docente, indicatore REP2, il quale presenta l'85% di giudizi positivi, confermando un'estrema positività analoga allo scorso anno.

1.3. ANALISI DELLA SITUAZIONE: livello di soddisfazione <u>Didattica a Distanza (DaD)</u>

L'analisi eseguita sulle domande relative alla Didattica a Distanza rileva che nessuna domanda ha ottenuto una valutazione complessivamente negativa (somma di "decisamente no" e "più no che sì").

Analogamente allo scorso anno, i valori delle risposte alle domande riguardanti la DaD sono largamente positivi, tuttavia per l'anno corrente si

1.1 CRITICITA' RILEVATE: livello di soddisfazione studenti presenti in aula (Opinion Week)

Analizzando la percentuale negativa di ciascun parametro, si evince che analogamente alla scorsa annualità i parametri più critici sono CON, MAT e CAR; tuttavia, il primo subisce un calo passando dal 17% al 15%, il secondo resta invariato sul 17% mentre il terzo presenta un incremento dal 21% al 23%.

In generale, i parametri restano in linea con quelli dell'anno precedente.

1.2 CRITICITA' RILEVATE: livello di soddisfazione studenti non frequentanti

In merito alla reperibilità del docente, indicatore REP2, è presente circa il 15% di giudizi negativi, dato in lieve aumento rispetto all'anno precedente dove risultava pari al 14%.

1.3 CRITICITA' RILEVATE: livello di soddisfazione Didattica a Distanza (DaD)

Analizzando la percentuale negativa di ciascuna domanda, si evince che la maggiore criticità si ha sulla domanda "La modalità di erogazione a distanza consente di seguire le attività integrative previste per questo insegnamento (esercitazioni, laboratori, ecc) in maniera appropriata ed efficace?" con il 18% di risposte negative, dato comunque in calo rispetto all'anno precedente, in cui risultava essere del 23%.

1.4 CRITICITA' RILEVATE DELLA SITUAZIONE GENERALE

1.4.1 Analisi dei dati: risultati

In dettaglio, per quanto riguarda le singole criticità da risolvere, sono state individuate pochissime situazioni critiche rispetto all'anno precedente corrispondenti ad alcune discipline che presentano sofferenze su singoli parametri inferiori ad una percentuale del 50% di risposte positive, che potrebbero essere risolte con piccole attenzioni e interlocuzioni con i docenti interessati.

A tal proposito si segnalano: COSTRUZIONI DI VEICOLI TERRESTRI, IMPIANTI MECCANICI II, QUALITA' DELLE LAVORAZIONI MECCANICHE, SICUREZZA DELGI IMPIANTI INDUSTRIALI, SIMULAZIONE E PROTOTIPAZIONE VIRTUALE E TECNOLOGIA MECCANICA II.

CRITICITA' RILEVATE

1.4.2 Freguenza dei corsi

Andrebbe approfondita la motivazione della risposta relativa alla sovrapposizione con gli altri corsi dal momento che tale valore risulta in crescita rispetto all'anno precedente (dal 10,4% al 14,1%). Questa potrebbe essere una informazione legata alla necessità da parte di alcuni studenti di seguire corsi del precedente semestre che non sono riusciti a seguire, per motivazioni che sono state discusse nel dettaglio nell'appendice e che pongono l'attenzione su due aspetti distinti: da un lato gli studenti che lamentano ancora un eccesso di carico didattico, dall'altro i docenti che riscontrano una più bassa preparazione e una precoce occupazione non formalizzata che inevitabilmente influenza il rendimento didattico.

PROPOSTE

1.4.1 Analisi dei dati: risultati

Per le discipline per le quali sono state evidenziate le suddette criticità si richiede un intervento da parte del Coordinatore, affinché approfondisca con studenti e docenti le difficoltà riscontrate.

Si propone di promuovere una serie di incontri tra i docenti e i rappresentanti degli studenti, al fine di individuare e concordare le azioni necessarie a migliorare la qualità delle discipline che hanno presentato tali criticità.

1.4.2 Corsi con giudizi positivi sotto il 50% di risposte positive (più risposte negative che positive)

Al fine di migliorare la situazione si propone di contattare, come avvenuto anche durante lo scorso anno accademico, i docenti che hanno ottenuto alcuni giudizi inferiori al 50% per sollecitare proposte di miglioramento.

Si invita il CdS ad attivare una discussione per identificare le cause degli indici complessivi per il CdS inferiori ai benchmark di riferimento.

2. SEZIONE B . ANALISI E PROPOSTE IN MERITO A MATERIALI E AUSILI DIDATTICI, LABORATORI, AULE, ATTREZZATURE, IN RELAZIONE AL RAGGIUNGIMENTO DEGLI OBIETTIVI DI APPRENDIMENTO AL LIVELLO DESIDERATO

ANALISI DELLA SITUAZIONE

Secondo i dati emersi dall'indagine Almalaurea sui laureati del corso magistrale di Ingegneria Meccanica, la valutazione sugli spazi didattici risulta sufficiente.

In particolare, gli studenti lamentano lo scarso, se non nullo, utilizzo dei laboratori, la percentuale degli utilizzatori è 58,4%, nettamente minore del 78% nazionale. La medesima tendenza è riscontrabile nell'uso dei servizi di biblioteca (57,5%) e nell'utilizzo delle postazioni informatiche (45,1%) che si sottolineano essere in numero non adeguato per il 60,8% degli studenti.

Nello specifico per ciascuno di questi servizi si riscontrano percentuali molto basse che ne evidenziano una inadeguatezza totale, per quanto tuttavia si raccomandano interventi migliorativi.

CRITICITA' RILEVATE

Le principali criticità riguardano le postazioni informatiche che risultano in numero non adeguato al numero degli studenti laddove ne viene concesso l'utilizzo.

PROPOSTE

- Richiedere ai docenti di essere tempestivi nell'upload del programma del corso, del materiale didattico (in forma, dove possibile, di dispense, di raccolte, di esercizi, etc.), del calendario degli esami e dell'orario di ricevimento.
- Per quanto riguarda il miglioramento delle lezioni al fine del raggiungimento degli obiettivi di apprendimento si consiglia di rendere gli argomenti trattati a lezione sempre attuali ed interessanti, magari integrando le lezioni frontali con attività laboratoriali, seminari, esperienze in azienda, attività utili per studenti magistrali che si approcceranno al mondo del lavoro al termine del corso di laurea e utili per accrescere l'interesse verso l'insegnamento.
- Prevedere l'inserimento di laboratori di meccanica e l'aumento delle postazioni informatiche.

3. SEZIONE C . ANALISI E PROPOSTE SULLA VALIDITÀ DEI METODI DI ACCERTAMENTO DELLE CONOSCENZE E ABILITÀ ACQUISITE DAGLI STUDENTI IN RELAZIONE AI RISULTATI DI APPRENDIMENTO ATTESI

ANALISI DELLA SITUAZIONE

Accertamento delle conoscenze e delle abilità acquisite dagli studenti

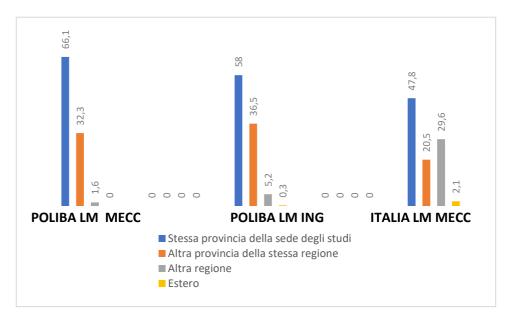
I metodi di accertamento delle competenze che gli studenti devono acquisire durante la frequenza dei diversi insegnamenti del corso di Laurea Magistrale in Ingegneria Meccanica sono molteplici: tradizionali prove finali consistenti in un colloquio con la commissione di verifica, prove di laboratorio, prove scritte (anche infra-annuali), sviluppo di progetti d'anno, lavori di gruppo (team working). Gli appelli mediamente sono 8 per ogni insegnamento e le date d'appello vengono riportate ad inizio anno solare sulle rispettive pagine ESSE3. Negli incontri della CPDS, docenti e studenti si sono confrontati su queste modalità di accertamento della preparazione degli studenti, concordando sulla loro congruità considerandole un mix efficace per la valutazione, come dimostrato dal valore positivo dall'indicatore ESA (90%).

In particolare, sul portale della didattica ESSE3 e nella SUA-CdS sono presenti e ben descritte le informazioni, i programmi e i metodi di accertamento della preparazione degli studenti per quasi tutti gli insegnamenti; le discipline sono svolte in maniera coerente con quanto dichiarato sul relativo sito web secondo l'indicatore COE del questionario che raggiunge un valore estremamente positivo (94%). La CPDS ha verificato che i programmi di insegnamento fossero in linea con gli obiettivi formativi del CdS; tuttavia, alcune Schede di Insegnamento risultano ancora non pubblicate. Si riportano di seguito gli insegnamenti per i quali i programmi non risultano visibili: PROPULSIONE AEROSPAZIALE; PROGETTAZIONE AGLI ELEMENTI FINITI DI STRUTTURE MECCANICHE; AZIONAMENTI A FLUIDO; PROPULSIONE AEROSPAZIALE;

ATTRITO E LUBRIFICAZIONE DI DISPOSITIVI E COMPONENTI DI MACCHINE; MOBILITA' ELETTRICA E AUTONOMA; PROGETTAZIONE AGLI ELEMENTI FINITI DI STRUTTURE MECCANICHE E DISPOSITIVI E SISTEMI VEICOLO; MECCANICA DELLA FRATTURA E DEL CONTATTO; MECCANICA DELLE VIBRAZIONI; MISURE E DISPOSITIVI PER LA BIOMECCANICA; DESIGN, TESTING E LAVORAZIONI DI COMPONENTI BIOMECCANICI; MODELLAZIONE E SIMULAZIONE DI STRUTTURE BIOLOGICHE; TECNOLOGIA DELLE GIUNZIONI; ADDITIVE MANUFACTURING & REVERSE ENGINEERING; CIRCULAR DESIGN, GREEN DESIGN E LCA NELLA PROGETTAZIONE MECCANICA; MECCANICA SPERIMENTALE; PROCESS MONITORING AND QUALITY CONTROL IN MANUFACTURING.

CDIT	CITA	RILEV	
CRITI	CITA	KILLV	MIL

Non si riscontrano particolari criticità.		

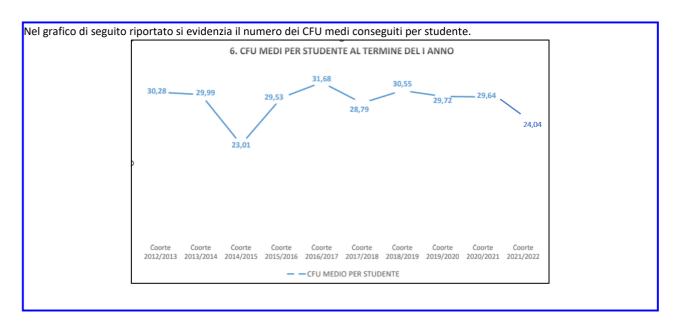

PROPOSTE

Si suggerisce di rammentare periodicamente ai singoli docenti di pubblicare e aggiornare tempestivamente le Schede di Insegnamento.

4. SEZIONE D. ANALISI E PROPOSTE SULLA COMPLETEZZA E SULL'EFFICACIA DEL MONITORAGGIO ANNUALE EDEL RIESAME CICLICO

Il CdS ha eseguito il monitoraggio annuale (SMA 2023) e preso in considerazione i rilievi diffusi come riportato nell'allegato 2, rispettando il processo suggerito dal PQA nell'ottica di strutturare la presa in carico dei dati a disposizione. Sono state, inoltre, discusse e proposte soluzioni operative ed efficaci; a tal proposito, si ritiene degno di menzione il webinar organizzato con exstudenti laureati alla magistrale di meccanica, le cui carriere di successo hanno rappresentato un esempio concreto e convincente al proseguimento degli studi nella stessa sede.

Di seguito si riporta l'analisi dei dati a disposizione della CPDS sulla provenienza degli studenti rispetto alla sede dell'università di frequenza. Il paragone è stato fatto tra gli studenti del PoliBa iscritti a un corso di laurea in Ing. Meccanica LM, gli studenti del PoliBa iscritti a un corso di laurea in Ingegneria Meccanica magistrale in Ingegneria e gli studenti in Italia iscritti a un corso di laurea magistrale in Ingegneria e gli studenti in Italia iscritti a un corso di laurea in Ingegneria Meccanica magistrale.


Dai dati analizzati, si nota che il trend è rimasto pressoché identico allo scorso anno. Per quanto riguarda gli studenti del PoliBa iscritti a un CdS in Ing. Meccanica LM il 66,1%, proviene dalla provincia di Bari, il 32,3% proviene da un'altra provincia della Puglia, mentre l'1,6% proviene da un'altra regione.

Per quanto riguarda gli studenti del PoliBa iscritti a un CdS magistrale in Ingegneria il 58% proviene dalla provincia di Bari, il 36,5% proviene da un'altra provincia della Puglia, mentre il 5,2% proviene da un'altra regione; a queste si aggiunge anche una percentuale di studenti provenienti dall'estero.

A livello nazionale, si nota che gli studenti iscritti a un CdS magistrale in Ing. Meccanica provengono per il 47,8% dalla stessa provincia della sede degli studi, il 20,5% da un'altra provincia della stessa regione, il 29,6% da un'altra regione e il 2,1% dall'estero. Ancora una volta si riscontra il fatto che molti studenti della regione Puglia preferiscono proseguire gli studi al Politecnico di Bari, mentre a livello nazionale sono molti di più gli studenti che decidono di proseguire gli studi in un'altra regione. Tali dati, inoltre, confermano ancora una scarsa attrattività del Politecnico di Bari da parte degli studenti esterni alla regione o provenienti dall'estero.

ANALISI DELLA SITUAZIONE

CRITICITA' RILEVATE

Si evidenzia ancora una volta il ridotto numero di studenti stranieri che decide di intraprendere il CdS, sebbene tale dato, non sembra preoccupante in considerazione del fatto che i suddetti studenti dispongono di un CdS in Mechanical Engineering. Per quanto riguarda il numero di CFU conseguiti, anche dopo un confronto con il Coordinatore a valle della SMA, si riscontra un calo rispetto allo scorso anno a conferma del fatto che risulta esserci una occupazione lavorativa da parte degli studenti più precoce rispetto al conseguimento del titolo e probabilmente la percezione di una maggiore difficoltà nel sostenere gli esami che tuttavia, a parte per i nuovi insegnamenti, non hanno mutato i propri programmi didattici.

PROPOSTE

La CPDS propone di incrementare e migliorare l'orientamento al fine di renderlo più efficace in generale al di fuori del territorio regionale. È auspicabile che iniziative come quella del webinar vengano replicate e intensificate, al fine di rientrare nel processo strutturale con lo scopo di avvicinare gli studenti a modelli concreti che possano sensibilizzare e supportare l'attività di orientamento in atto.

La CPDS, inoltre, suggerisce modalità di indagine tra i laureati triennali per meglio comprendere le motivazioni che li spingano a continuare i percorsi magistrali altrove o eventualmente ad abbandonarli definitivamente, al fine di proporre azioni valide a mantenerli internamente. 5. SEZIONE E. ANALISI E PROPOSTE SULL'EFFETTIVA DISPONIBILITÀ E CORRETTEZZA DELLE INFORMAZIONI FORNITE NELLE PARTI PUBBLICHE DELLA SUA-CDS

ANALISI DELLA SITUAZIONE

Le informazioni fornite nelle parti pubbliche della SUA-CdS sono disponibili sul sito https://poliba.coursecatalogue.cineca.it/corsi/2023 nella sezione dedicata al piano di studi e alle informazioni più generali del corso di studi. Tutti i link sono attivi e le informazioni presenti sono chiare e coerenti con il percorso formativo erogato. Tutte le sezioni pubbliche risultano correttamente compilate, con informazioni aggiornate, chiare ed esaustive.

Le stesse informazioni presenti nella pagina web relativa al CdS (Guide ESSE3) rimandano al catalogo sopra menzionato per una maggiore sinteticità delle fonti.

Le schede degli insegnamenti sono in generale complete di tutte le informazioni necessarie agli studenti, anche se i programmi d alcuni insegnamenti non sono stati resi pubblici.
CRITICITA' RILEVATE
Non ci sono criticità rilevate.
PROPOSTE
THOLOGIC

6. VALUTAZIONE DELL'ADEGUATEZZA DELL'OFFERTA FORMATIVA (PARTEFACOLTATIVA)

ANALISI DELLA SITUAZIONE

Si rinnova l'analisi effettuata nello scorso anno relativamente all'aggiornamento e al rinnovamento dei percorsi formativi più orientati alla multi- e interdisciplinarità, sia in considerazione dell'inserimento di nuovi curricula che dell'introduzione di nuovi insegnamenti trasversali tra i diversi curricula. Tale aggiornamento si è reso necessario in risposta alle mutate competenze richieste e agli obiettivi formativi rinnovati che il confronto con le parti interessate ha evidenziato tanto nei due tavoli API relativi ai nuovi curricula attivati, quanto in occasione dei tavoli di definizione del Piano Strategico.

L'adeguatezza dell'offerta formativa e le competenze risultano adeguate in considerazione dei risultati estremamente positivi riportati da Almalaurea, ulteriori riscontri potranno essere raccolti in itinere con colloqui diretti e verbali redatti in sede di monitoraggio.

CRITICITA' RILEVATE

Alcune criticità fisiologiche manifestatesi all'avvio sono state tempestivamente risolte.

PROPOSTE

La CPDS ritiene anche quest'anno che per valutare opportunamente l'adeguatezza di questa offerta formativa sarà necessario attendere ancora qualche anno, in modo tale da avere una panoramica completa della situazione generale.

7. SEZIONE F. ULTERIORI PROPOSTE DI MIGLIORAMENTO

In questa sezione la Commissione paritetica può esprimere valutazioni trasversali difficilmente inseribili nei quadri sopra definiti.

La CPDS riporta che anche nel corso dell'A.A. 2022-23 si è assistito ad una riduzione del numero di studenti e studentesse frequentanti. La ridotta frequenza denunciata dai docenti e dichiarata dagli stessi studenti, come riportato in appendice, riporta l'attenzione sulla modalità di erogazione didattica che pur essendo stata traghettata verso la quasi totale presenza in aula, tuttavia consente eccezioni e deroghe alla modalità on line sia durante le stesse ore previste in presenza, che in quelle ore che sono state preventivamente calendarizzate come ore virtuali. Nell'annualità corrente, la modalità online concessa formalmente dal CdS resta riservata ai soli studenti iscritti presso la sede di Taranto, tuttavia non sono mancate occasioni in cui per svariate ragioni personali singoli studenti abbiano utilizzato il canale Teams per accedere da casa pur essendo regolarmente iscritti a Bari.

Si ritiene opportuno evidenziare una regolamentazione precisa a riguardo, oltre che la possibilità di calendarizzare l'intero carico didattico settimanale per ciascun insegnamento totalmente in presenza.

8. APPENDICE

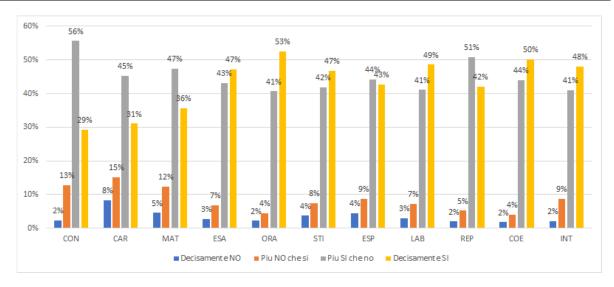
Le rilevazioni delle opinioni degli studenti fanno riferimento ai dati raccolti nei corsi d'insegnamento tenuti durante l'A.A. 2022-23. I questionari dell'Osservatorio della Didattica sono stati somministrati tramite il Portale Esse3 a tutti gli studenti prima di prenotarsi all'appello. I dati riportati in questa Relazione si riferiscono al rilevamento online dell'opinione degli studenti. Su 49 insegnamenti, sono stati compilati 1606 questionari online. Per quanto riguarda metodi alternativi di audizione degli studenti e dei loro rappresentanti finalizzati a raccoglierne trasversalmente l'opinione, si ricorda che essa viene costantemente raccolta nei tanti momenti di incontro formali e informali, attraverso figure quali il Coordinatore del CdS e lo stesso Direttore del Dipartimento e riunioni di organi quali il Consiglio di Dipartimento e la stessa CPS.

Nei grafici seguenti vengono evidenziate le opinioni degli studenti con l'utilizzo dei seguenti parametri in tabella:

CRITERI DI VALUTAZIONE	LABEL
Le conoscenze preliminari possedute sono risultate sufficienti per la comprensione degli argomenti previsti nel programma d'esame?	CON
Il carico di studio dell'insegnamento è proporzionato ai crediti assegnati?	CAR
Il materiale didattico (indicato e disponibile) è adeguato per lo studio della materia?	MAT
Le modalità di esame sono state definite in modo chiaro?	ESA
Gli orari di svolgimento di lezioni, esercitazioni e altre eventuali attività didattiche sono rispettati?	ORA
Il docente stimola/motiva l'interesse verso la disciplina?	STI
Il docente espone gli argomenti in modo chiaro?	ESP
Le attività didattiche diverse dalle lezioni (esercitazioni, laboratori, chat, forum etc), ove presenti sono state utili all'apprendimento della materia?	LAB
Il docente è reperibile per chiarimenti e spiegazioni?	REP
L'insegnamento è stato svolto in maniera coerente con quanto dichiarato sul sito Web del corso di studio?	COE
E' interessato/a agli argomenti trattati nell'insegnamento?	INT

Agli studenti è richiesto di dichiarare il proprio accordo con ogni affermazione attraverso le seguenti opzioni di risposta:

- decisamente no
- più no che sì
- più sì che no
- decisamente sì

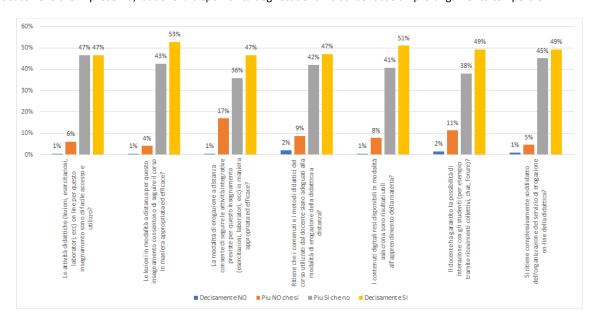

Allo scopo di fornire un quadro sintetico ed immediatamente chiaro dell'analisi, in questa relazione si presentano i risultati ottenuti calcolando positive le risposte "decisamente sì" e "più sì che no" a ciascuna domanda. Per lo stesso motivo di sintesi e chiarezza non sono state effettuate correzioni nei casi in cui il numero di questionari è risultato sensibilmente inferiore alla media. Le discipline prese in considerazione sono le seguenti:

▼	COGNOME	NOME
ATTRITO E LUBRIFICAZIONE DI DISPOSITIVI E COMPONENTI DI MACCHINE	PUTIGNANO,MENGA	CARMINE,NICOLA
BIOMECCANICA	MUMMOLO	CARLOTTA
CERTIFICAZIONE E OMOLOGAZIONE DI MATERIALI E COMPONENTI	BARILE	CLAUDIA
COMPATIBILITA' AMBIENTALE DEGLI IMPIANTI MECCANICI E SICUREZZA DEGLI IMPIANTI	BOENZI, IANNANTUONO	FRANCESCO, GIOVANNI
CONTROLLI AUTOMATICI	NASO	DAVID
COSTRUZIONI DI VEICOLI TERRESTRI	CIAVARELLA	MICHELE
DIAGNOSTICA STRUTTURALE	PALUMBO	DAVIDE
DIGITAL MANUFACTURING E FABBRICAZIONE PER DEFORMAZIONE PLASTICA	PALUMBO, PERCOCO	GIANFRANCO,GIANLUCA
DINAMICA E CONTROLLO DELLE MACCHINE	DAMBROSIO	LORENZO
FLUIDODINAMICA COMPUTAZIONALE	PASCAZIO	GIUSEPPE
GASDINAMICA E AERODINAMICA	PASCAZIO	GIUSEPPE
GESTIONE DEI RIFIUTI INDUSTRIALI	NOTARNICOLA	MICHELE
GESTIONE E SOSTENIBILITA' AZIENDALE	PONTRANDOLFO, ARMIGERO	PIERPAOLO, CIRO
IMPIANTI FLUIDICI	ORESTA	PAOLO
IMPIANTI MECCANICI II	DIGIESI	SALVATORE
INGLESE II	LOPEZ, NAPOLITANO	ANNA ,MICHELE
LAVORAZIONI DI MATERIALI AERONAUTICI	SPINA	ROBERTO
MACCHINE A FLUIDO E PRODUZIONE SOSTENIBILE DELL'ENERGIA	FORNARELLI, CHERUBINI	FRANCESCO,STEFANIA
MACCHINE A FLUIDO II E SISTEMI ENERGETICI II	FORNARELLI, CHERUBINI	FRANCESCO, STEFANIA
MACCHINE ED AZIONAMENTI ELETTRICI	SALVATORE	NADIA
MECCANICA APPLICATA ALLE MACCHINE II	CARBONE	GIUSEPPE
MECCANICA DEL VEICOLO	MANTRIOTA	GIACOMO
MECCANICA DEL VOLO	AVANZINI	GIULIO
MECCANICA DELLE VIBRAZIONI E PROGETTAZIONE AGLI ELEMENTI FINITI DI STRUTTURE MECCANICHE		LEONARDO, LUCIANO
MECCANICA SPERIMENTALE E PROGETTAZIONE AGLI ELEMENTI FINITI DI STRUTTURE MECCANICHE	CASAVOLA, AFFERRANTE	CATERINA, LUCIANO
METODI AVANZATI PER LA STAMPA 3D ED IL REVERSE ENGINEERING	LAVECCHIA	FULVIO
MISURE E DISPOSITIVI PER LA BIOMECCANICA	FABBIANO	LAURA
MISURE TERMOFLUIDODINAMICHE	FABBIANO	LAURA
MOBILITA' ELETTRICA E AUTONOMA	MANGINI	AGOSTINO MARCELLO
MODELLAZIONE E SIMULAZIONE DI STRUTTURE BIOLOGICHE	BOCCACCIO	ANTONIO
MODELLISTICA E SIMULAZIONE DEGLI IMPIANTI MOTORI	DE PALMA	PIETRO
MOTORI A COMBUSTIONE INTERNA E PROPULSORI IBRIDI	LAERA	DAVIDE
OPTO-ACOUSTIC TECHNIQUES FOR DIMENSIONAL MONITORING AND PROCESS ASSESSMENT	PAPPALETTERA	GIOVANNI
PROCESSI DI FABBRICAZIONE PER VEICOLI LEGGERI	PICCININNI	ANTONIO
PRODUZIONE AVANZATA NELLA FABBRICA DIGITALE	GALANTUCCI	LUIGI MARIA
PROGETTAZIONE ASSISTITA DAL CALCOLATORE E MECCANICA SPERIMENTALE	MORAMARCO, AFFERRANTE	VINCENZO, LUCIANO
PROGETTAZIONE CON MATERIALI INNOVATIVI E SPERIMENTAZIONE PER AEROMOBILI	CASAVOLA	CATERINA
PROGETTAZIONE MECCANICA FUNZIONALE	BOTTIGLIONE	FRANCESCO
PROGETTAZIONE MECCANICA II E COSTRUZIONE DI MACCHINE	DEMELIO, GALIETTI	GIUSEPPE POMPEO, UMBERTO
QUALITA' DELLE LAVORAZIONI MECCANICHE	CAMPANELLI	SABINA LUISA
REALTA' AUMENTATA PER L'INDUSTRIA	GATTULLO	MICHELE
SICUREZZA DEGLI IMPIANTI INDUSTRIALI	IAVAGNILIO	RAFFAELLO PIO
SIMULAZIONE E PROTOTIPAZIONE VIRTUALE	FIORENTINO	MICHELE
SISTEMI DI PRODUZIONE INTERCONNESSI	DE LUCIA, DE MARTINO	MASSIMO, GIOVANNI
STRUMENTAZIONE BIOMEDICALE	BUONGIORNO	DOMENICO
TECNOLOGIA MECCANICA II	TRICARICO	LUIGI
TECNOLOGIA MECCANICA II TECNOLOGIE PER LE ENERGIE RINNOVABILI E LA PRODUZIONE DISTRIBUITA DELL'ENERGIA	TORRESI, CAMPOREALE	MARCO, SERGIO MARIO
TECNOLOGIE PER LE ENERGIE RINNOVABILI E LA PRODUZIONE DISTRIBUITA DELL'ENERGIA TECNOLOGIE SPECIALI E TECNOLOGIA DELLE GIUNZIONI	ANGELASTRO, PALMUBO	ANDREA, GIANFRANCO
TRIBOLOGIA	CARBONE	GIUSEPPE
LUIDOLOGIA	CARBONE	GIUSEPPE

L'analisi è stata effettuata distintamente per studenti frequentanti (paragrafo 1.1), studenti non frequentanti (paragrafo 1.2), DaD (paragrafo 1.3). Nel paragrafo 1.4 è stata fatta una analisi dei dati generali di studenti frequentanti e non, con i relativi confronti rispetto all'anno accademico precedente.

1.1. ANALISI DELLA SITUAZIONE: livello di soddisfazione studenti presenti in aula (Opinion Week)

	LABEL	Decisamente NO	Più NO che si	Più SI che no	Decisamente SI
Le conoscenze preliminari possedute sono risultate sufficienti per la comprensione degli argomenti previsti nel programma d'esame?	CON	2%	13%	56%	29%
Il carico di studio dell'insegnamento è proporzionato aicrediti assegnati?	CAR	8%	15%	45%	31%
Il materiale didattico (indicato e disponibile) è adeguato allostudio della materia?	MAT	5%	12%	47%	36%
Le modalità di esame sono state definite in modo chiaro?	ESA	2%	4%	41%	53%
Gli orari di svolgimento di lezioni, esercitazioni e altreeventuali attività didattiche sono rispettati?	ORA	4%	8%	42%	47%
Il docente stimola/motiva l'interesse verso la disciplina?	STI	4%	9%	44%	43%
Il docente espone gli argomenti in modo chiaro?	ESP	4%	9%	44%	43%
Le attività didattiche diverse dalle lezioni (esercitazioni, laboratori, chat, forum etc), ove presenti sono state utili all'apprendimento della materia?	LAB	3%	7%	41%	49%
Il docente è effettivamente reperibile per chiarimenti espiegazioni?	REP	2%	5%	51%	42%
L'insegnamento è stato svolto in maniera coerente conquanto dichiarato sul sito Web del corso di studio?	COE	2%	4%	44%	50%
È interessato/a agli argomenti trattati nell'insegnamento?	INT	2%	9%	41%	48%

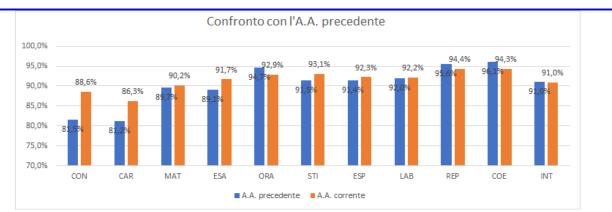

1.2. ANALISI DELLA SITUAZIONE: livello di soddisfazione studenti non frequentanti

	LABEL	Decisamente NO	Più NO che si	Più SI che no	Decisamente SI
Il docente è reperibile per chiarimenti e	REP2	4%	11%	52%	33%
spiegazioni?					

Nel caso degli studenti non frequentanti, i dati OPIS disponibili permettono di valutare il livello di soddisfazione specifico solo in merito alla reperibilità del docente, indicatore REP2, il quale presenta circa l'85% di giudizi positivi, in linea con l'anno precedente.

1.3. ANALISI DELLA SITUAZIONE: livello di soddisfazione Didattica a Distanza (DaD)

La percentuale massima di risposte positive tra le risposte (somma di "decisamente sì" e "più sì che no") è il 96% sulla domanda "Le lezioni in modalità a distanza per questo insegnamento consentono di seguire il corso in maniera appropriata ed efficace?". Globalmente tutti i valori delle risposte alle domande riguardanti la DaD sono largamente positivi, sebbene per l'annualità oggetto di esame la modalità a distanza si riferisca solo a 2 ore settimanali, che nella maggior parte dei casi venivano spesso inglobate nelle ore in presenza, laddove la disponibilità degli studenti ne consentisse un prolungamento temporale.


Analizzando la percentuale negativa di ciascuna domanda, si evince che la maggiore criticità si ha sulla domanda "La modalità di erogazione a distanza consente di seguire le attività integrative previste per questo insegnamento (esercitazioni, laboratori, ecc) in maniera appropriata ed efficace?" con il 18% di risposte negative, che tuttavia per quanto detto prima non risulta rappresentativo della didattica in corso di valutazione, essendo le ore in modalità a distanza limitate ad una percentuale molto più bassa rispetto a quelle in presenza e talvolta recuperate con estensioni di queste ultime. Ad ogni modo il dato è in calo rispetto allo scorso anno, in cui era pari al 23%.

1.4 ANALISI DELLASITUAZIONE GENERALE

3) Analisi dei dati: risultati

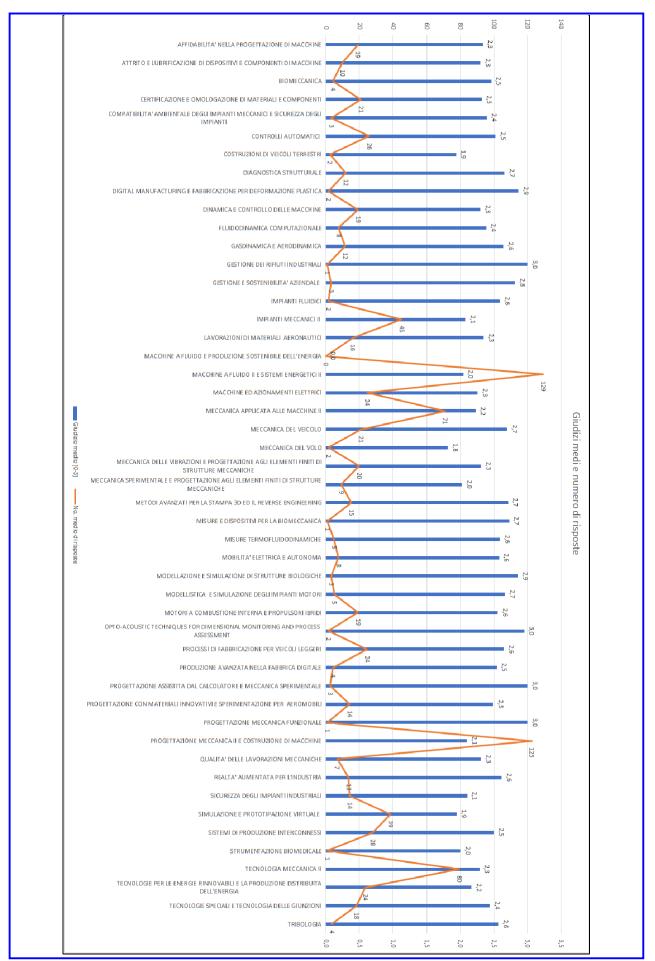
Una prima analisi è stata condotta coerentemente con gli indirizzi del PQA, valutando la percentuale di giudizi positivi (somma delle risposte "Decisamente si" e "Più sì che no") ottenuti per ciascuna disciplina per i criteri. Dal grafico si evince come tutti i quesit siano estremamente positivi e sempre comparabili o in miglioramento rispetto all'anno scorso.

I valori ottenuti, inoltre, sono stati confrontati con il primo "valore soglia", pari all' 80%, indicato dal PQA quale valore limite di attenzione I risultati di tale analisi hanno fornito una indicazione "di attenzione" per le discipline sottoelencate. Per ciascuna di esse viene riportato nella tabella sottostante lo scostamento percentuale negativo rispetto al valore soglia.

l valori riportati in tabella indicano gli scostamenti delle percentuali di risposte positive di ciascun corso rispetto alla media globale, risultata per tutti i quesiti sempre largamente maggiore del valore di riferimento pari all' 80%.

	CON	CAR	MAT	ESA	ORA	re sti	ESP	LAB	REP	COE	INT
AFFIDABILITA' NELLA PROGETTAZIONE DI MACCHINE	-24%	CAIN	- WAT	Lon	Ollar	511	251	5.5			
ATTRITO E LUBRIFICAZIONE DI DISPOSITIVI E COMPONENTI DI MACCHINE			-42%								
BIOMECCANICA			4270								_
CERTIFICAZIONE E OMOLOGAZIONE DI MATERIALI E COMPONENTI	-36%										-21%
COMPATIBILITA' AMBIENTALE DEGLI IMPIANTI MECCANICI E SICUREZZA DEGLI IMPIANTI	-3070	-25%			-25%						-21/0
CONTROLLI AUTOMATICI		-2370			-2370						_
COSTRUZIONI DI VEICOLI TERRESTRI		-67%		-33%		-33%	-33%				
DIAGNOSTICA STRUTTURALE		-0776		-3370		-3370	-3370				
DIGITAL MANUFACTURING E FABBRICAZIONE PER DEFORMAZIONE PLASTICA											-
DINAMICA E CONTROLLO DELLE MACCHINE											
FLUIDODINAMICA COMPUTAZIONALE											-22%
GASDINAMICA COMPOTAZIONALE		-29%									-22%
		-29%									-
GESTIONE DEI RIFIUTI INDUSTRIALI											
GESTIONE E SOSTENIBILITA' AZIENDALE											
IMPIANTI FLUIDICI											
IMPIANTI MECCANICI II		-69%	-31%								-33%
LAVORAZIONI DI MATERIALI AERONAUTICI											
MACCHINE A FLUIDO E PRODUZIONE SOSTENIBILE DELL'ENERGIA											
MACCHINE A FLUIDO II E SISTEMI ENERGETICI II		-32%	-29%			-28%	-27%				
MACCHINE ED AZIONAMENTI ELETTRICI											-50%
MECCANICA APPLICATA ALLE MACCHINE II		-24%									
MECCANICA DEL VEICOLO											
MECCANICA DEL VOLO				-50%	-50%			-50%		-50%	
MECCANICA DELLE VIBRAZIONI E PROGETTAZIONE AGLI ELEMENTI FINITI DI STRUTTURE	-25%										
MECCANICA SPERIMENTALE E PROGETTAZIONE AGLI ELEMENTI FINITI DI STRUTTURE ME			-36%								
METODI AVANZATI PER LA STAMPA 3D ED IL REVERSE ENGINEERING											
MISURE E DISPOSITIVI PER LA BIOMECCANICA											
MISURE TERMOFLUIDODINAMICHE											
MOBILITA' ELETTRICA E AUTONOMA											
MODELLAZIONE E SIMULAZIONE DI STRUTTURE BIOLOGICHE											
MODELLISTICA E SIMULAZIONE DEGLI IMPIANTI MOTORI	-33%	-33%									
MOTORI A COMBUSTIONE INTERNA E PROPULSORI IBRIDI											
OPTO-ACOUSTIC TECHNIQUES FOR DIMENSIONAL MONITORING AND PROCESS ASSESSM											
PROCESSI DI FABBRICAZIONE PER VEICOLI LEGGERI											
PRODUZIONE AVANZATA NELLA FABBRICA DIGITALE											
PROGETTAZIONE ASSISTITA DAL CALCOLATORE E MECCANICA SPERIMENTALE											
PROGETTAZIONE CON MATERIALI INNOVATIVI E SPERIMENTAZIONE PER AEROMOBILI										-24%	
PROGETTAZIONE MECCANICA FUNZIONALE											
PROGETTAZIONE MECCANICA II E COSTRUZIONE DI MACCHINE	-26%	-34%	-28%				-22%				
QUALITA' DELLE LAVORAZIONI MECCANICHE											-63%
REALTA' AUMENTATA PER L'INDUSTRIA											
SICUREZZA DEGLI IMPIANTI INDUSTRIALI								-64%			
SIMULAZIONE E PROTOTIPAZIONE VIRTUALE	-33%	-65%	-41%	-30%		-22%	-43%				
SISTEMI DI PRODUZIONE INTERCONNESSI											
STRUMENTAZIONE BIOMEDICALE											
TECNOLOGIA MECCANICA II		-52%									T
TECNOLOGIE PER LE ENERGIE RINNOVABILI E LA PRODUZIONE DISTRIBUITA DELL'ENERG	-23%	52.0									
TECNOLOGIE SPECIALI E TECNOLOGIA DELLE GIUNZIONI	2070										
TRIBOLOGIA		l					-	-			+

2) Giudizio sulla totalità dei corsi di insegnamento


Al fine di definire un indicatore sintetico per la valutazione di ciascun insegnamento erogato, è stato assegnato un punteggio con un valore numerico compreso tra 0 e 3.

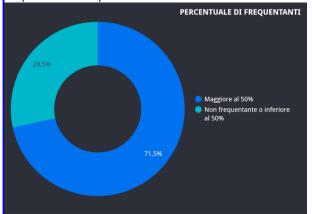
Tale punteggio è stato calcolato nel seguente modo: per ogni domanda del questionario è stato assegnato un punteggio calcolato come media pesata delle risposte. I pesi assegnati sono stati i seguenti:

decisamente no 0
più no che sì 1
più sì che no 2
decisamente sì 3

Il punteggio finale è la media aritmetica dei punteggi ottenuti su tutte le domande.

Il valor medio dei punteggi ottenuti da tutti gli insegnamenti del CdS è pari a 2,3 in linea con quello dell'anno precedente.

4) Corsi con giudizi sotto il 50% di risposte positive (indicata la % di risposte negative)


Corsi con casi sotto il 50% di risposte positive (indicata la % di risposte negative)											
	CON	CAR	MAT	ESA	ORA	STI	ESP	LAB	REP	COE	INT
AFFIDABILITA' NELLA PROGETTAZIONE DI MACCHINE											
ATTRITO E LUBRIFICAZIONE DI DISPOSITIVI E COMPONENTI DI MACCHINE											
BIOMECCANICA											
CERTIFICAZIONE E OMOLOGAZIONE DI MATERIALI E COMPONENTI											
COMPATIBILITA' AMBIENTALE DEGLI IMPIANTI MECCANICI E SICUREZZA DEGLI IMPIANTI											
CONTROLLI AUTOMATICI											
COSTRUZIONI DI VEICOLI TERRESTRI		67%									
DIAGNOSTICA STRUTTURALE											
DIGITAL MANUFACTURING E FABBRICAZIONE PER DEFORMAZIONE PLASTICA											
DINAMICA E CONTROLLO DELLE MACCHINE											
FLUIDODINAMICA COMPUTAZIONALE											
GASDINAMICA E AERODINAMICA											
GESTIONE DEI RIFIUTI INDUSTRIALI											
GESTIONE E SOSTENIBILITA' AZIENDALE											
IMPIANTI FLUIDICI											
IMPIANTI MECCANICI II		69%									
LAVORAZIONI DI MATERIALI AERONAUTICI											
MACCHINE A FLUIDO E PRODUZIONE SOSTENIBILE DELL'ENERGIA											
MACCHINE A FLUIDO II E SISTEMI ENERGETICI II											
MACCHINE ED AZIONAMENTI ELETTRICI											
MECCANICA APPLICATA ALLE MACCHINE II											
MECCANICA DEL VEICOLO											
MECCANICA DEL VOLO											
MECCANICA DELLE VIBRAZIONI E PROGETTAZIONE AGLI ELEMENTI FINITI DI STRUTTURE											
MECCANICA SPERIMENTALE E PROGETTAZIONE AGLI ELEMENTI FINITI DI STRUTTURE ME											
METODI AVANZATI PER LA STAMPA 3D ED IL REVERSE ENGINEERING											
MISURE E DISPOSITIVI PER LA BIOMECCANICA											
MISURE TERMOFLUIDODINAMICHE											
MOBILITA' ELETTRICA E AUTONOMA											
MODELLAZIONE E SIMULAZIONE DI STRUTTURE BIOLOGICHE											
MODELLISTICA E SIMULAZIONE DEGLI IMPIANTI MOTORI											
MOTORI A COMBUSTIONE INTERNA E PROPULSORI IBRIDI											
OPTO-ACOUSTIC TECHNIQUES FOR DIMENSIONAL MONITORING AND PROCESS ASSESSI	V										
PROCESSI DI FABBRICAZIONE PER VEICOLI LEGGERI											
PRODUZIONE AVANZATA NELLA FABBRICA DIGITALE											
PROGETTAZIONE ASSISTITA DAL CALCOLATORE E MECCANICA SPERIMENTALE											
PROGETTAZIONE CON MATERIALI INNOVATIVI E SPERIMENTAZIONE PER AEROMOBILI											
PROGETTAZIONE MECCANICA FUNZIONALE											
PROGETTAZIONE MECCANICA II E COSTRUZIONE DI MACCHINE											
QUALITA' DELLE LAVORAZIONI MECCANICHE											63%
REALTA' AUMENTATA PER L'INDUSTRIA											03/0
SICUREZZA DEGLI IMPIANTI INDUSTRIALI	—	 						64%			
SIMULAZIONE E PROTOTIPAZIONE VIRTUALE	-	65%	-	-				0470	-	-	
SISTEMI DI PRODUZIONE INTERCONNESSI	-	03/0		-						-	
STRUMENTAZIONE BIOMEDICALE		1		-					-	-	
	-	F20/	-	-		ļ	 			-	
TECNOLOGIA MECCANICA II TECNOLOGIE PER LE ENERGIE RINNOVABILI E LA PRODUZIONE DISTRIBUITA DELL'ENER		52%									
		 									
TECNOLOGIE SPECIALI E TECNOLOGIA DELLE GIUNZIONI											
TRIBOLOGIA	ļ	l	l	l		l	l		l	l	

I giudizi risultano essere per la maggior parte positivi. Tuttavia, si riscontrano valori molto più bassi rispetto alla media per il parametro CAR per le discipline COSTRUZIONE DI VEICOLI TERRESTRI, IMPIANTI MECCANICI II, SIMULAZIONE E PROTOTIPAZIONE VIRTUALE e TECNOLOGIA MECCANICA II. Inoltre, parametri più bassi della media si evidenziano anche per il parametro INT relativo alla disciplina QUALITA' DELLE LAVORAZIONI MECCANICHE e per LAB relativamente alla disciplina SICUREZZA DELGI IMPIANTI INDUSTRIALI.

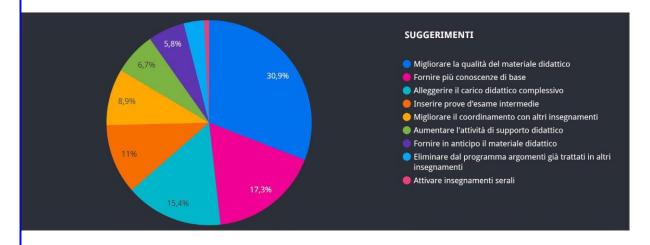
Si rende necessario interloquire con docente e studenti al fine di finalizzare le azioni migliorative da attuare, in riferimento alle singole criticità evidenziate.

5) Frequenza dei corsi

Dal grafico sottostante si evince che il 71,5% degli studenti ha frequentato i corsi mentre il 28,5% non ha frequentato o ha frequentato in una percentuale inferiore al 50%. I valori si discostano poco da quelli dell'anno precedente (72,8% e 27,2%).

I motivi della mancata frequenza risiedono principalmente nell'aver precedentemente frequentato l'insegnamento in un altro anno accademico (31,3%), in impegni lavorativi (20,8%) e nella sovrapposizione con altre lezioni (14,1%).

Andrebbe approfondita la motivazione della risposta relativa alla sovrapposizione con gli altri corsi che rispetto allo scorso anno accademico è cresciuto di circa 4 punti percentuali (dal 10,4 % al 14,1%), tuttavia potrebbe essere una informazione legata alla necessità da parte di alcuni studenti di seguire corsi del precedente semestre che, per eccesso di carico didattico, non sono riusciti a seguire. È inoltre desta attenzione la crescita percentuale fino al 7,2%, relativamente alla risposta riguardante la scarsa utilità della frequenza ai fini preparatori dell'esame. Questo dato che nella precedente annualità risultava quasi non riscontrabile percentualmente, quest'anno copre una fetta abbastanza ampia sulla mancata frequenza, che riporta l'attenzione sulla percezione che gli studenti hanno circa l'importanza di seguire le singole discipline e di conseguenza sui dati legati al ridotto numero di CFU conseguiti alla fine del primo anno e sulle motivazioni precedentemente discusse.


Anche quest'anno come per l'anno precedente le risposte relative alla voce "altro" sono state dettagliate all'interno dei questionari.

Suggerimenti degli studenti

Per ciascun corso sono stati analizzati i suggerimenti degli studenti in percentuale, per evidenziare gli aspetti didattici che loro sollecitano maggiormente.

In generale, le maggiori criticità evidenziate risultano percentualmente meno pesanti rispetto alla scorsa annualità, in particolare circa la necessità di migliorare il materiale didattico e di alleggerire il carico didattico complessivo. Nello specifico risulta:

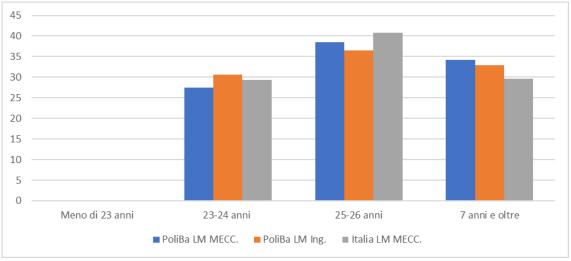
- Migliorare la qualità del materiale didattico (per il 30,9% della platea degli intervistati, valore in discesa da33,6%)
- Fornire più conoscenze base (per il 17,3% della platea degli intervistati, valore in salita da 10,3%)
- Alleggerire il carico didattico complessivo (per il 15,4% della platea degli intervistati, valore in discesa da 25,5%)
- Inserire prove d'esame intermedie (per l'11% della platea degli intervistati, valore in salita da 6,4%)
- Migliorare il coordinamento con altri insegnamenti (per l'8,9% della platea degli intervistati, valore in salita da 8,6%)

5) Follow-up dai dati AlmaLaurea

Di seguito si riportano i dati Almalaurea al fine di valutare l'efficacia della formazione dal punto di vista dei neolaureati. Confronto fra:

- Politecnico di Bari LM in Ingegneria Meccanica (PoliBa LM Mec.)
- Politecnico di Bari tutti i CdS LM in Ingegneria (PoliBa LM Ing.)
- Italia tutti i CdS LM in Ingegneria Meccanica (Italia LM Mec.)

	PoliBa LM Mec.	PoliBa LM Ing.	Italia LM Mec.
	Politecnico di Bari - LM in Ingegneria	Politecnico di Bari - tutti i CdS LM in	Italia - tutti i CdS LM in Ingegneria
	Meccanica	Ingegneria	Meccanica
Numero dei laureati	117	589	3124
Hanno compilato il questionario	113	551	2955

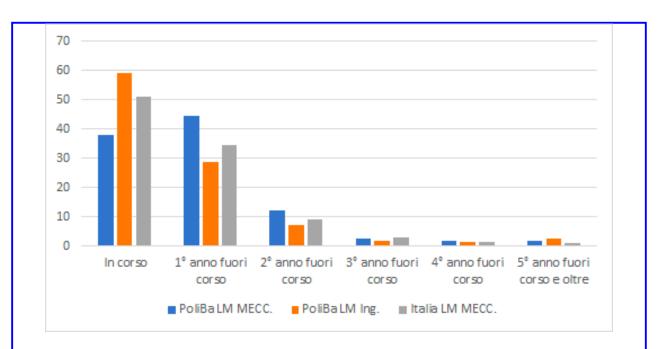

Dati analizzati

- età alla laurea
- riuscita negli studi
- regolarità negli studi

Si riportano il grafico e la tabella espressi in percentuale in funzione dell'età media di laurea, paragonando LM Mec. PoliBa a LM Ing. PoliBa e LM Mec. a livello nazionale:

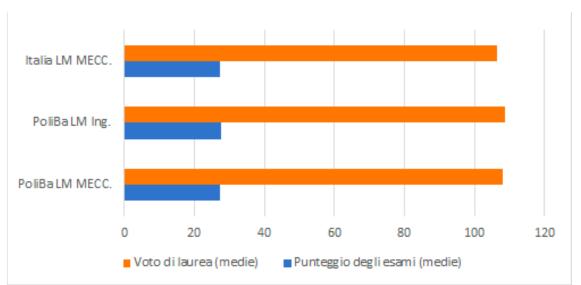
	PoliBa LM Mec.	PoliBa LM Ing.	Italia LM Mec.
Meno di 23 anni	-	-	0,2
23-24 anni	27,4	30,6	29,4
25-26 anni	38,5	36,5	40,8
7 anni e oltre	34,2	32,9	29,6

l dati dimostrano un miglioramento netto non solo per la magistrale di meccanica ma per tutte le magistrali di ingegneria nella fascia d'età 23-24 anni, c'è anche un dato positivo nella fascia 25-26 anni corrispondentemente ad un calo del numero di laureati oltre i 7 anni dalla laurea rispetto all'anno precedente.

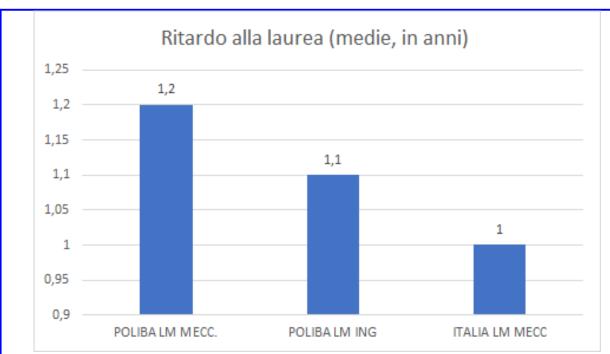

Il 27,4% degli studenti di Ing. Meccanica LM del PoliBa raggiunge la laurea tra i 23 e i 24 anni, il 38,5% la raggiunge tra i 25 e i 26 anni,mentre il 34,2% la raggiunge più tardi.

Il 30,6% degli studenti del PoliBa raggiunge la laurea magistrale in Ingegneria a 23-24anni, il 36,5% la raggiunge a 25-26 anni, mentre il 32,9% la raggiunge più tardi.

Lo 0,2% degli studenti di Ing. Meccanica in Italia raggiunge la laurea magistrale a meno di 23 anni, il 29,4% la raggiunge a 23-24 anni, il 40,8% la raggiunge a 25-26 anni e il 29,6% la raggiunge più tardi.

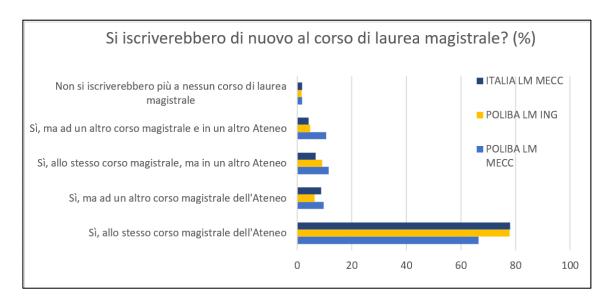

I trend confermano gli andamenti della scorsa annualità, si nota infatti che gli studenti di Ing. Meccanica LM del PoliBa che raggiungono la laurea a 23-24 anni, sono meno rispetto alla media nazionale e rispetto ad altri corsi magistrali del PoliBa, mentre i fuoricorso sono molti di più rispetto alla media nazionale.

	PoliBa LM Mec.	PoliBa LM Ing.	Italia LM Mec.
In Corso	37,9	59,2	51,1
1° anno fuori corso	44,4	28,5	34,6
2° anno fuori corso	12,1	7,0	9,2
3° anno fuori corso	2,4	1,8	2,9
4° anno fuori corso	1,6	1,2	1,2
5° anno fuori corso	1,6	2,4	1,0

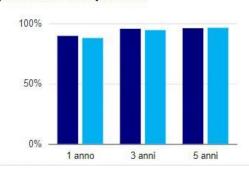

In linea con l'anno precedente, anche da questi dati si nota che gli studenti di Ing. Meccanica LM laureati in corso sono molti meno rispetto alla media nazionale e alla media degli altri corsi di laurea magistrali del PoliBa. Anche quest'anno resta confermato il parere degli studenti, secondo cui questo accade perché il corso magistrale di ingegneria meccanica prevede per diversi insegnamenti modalità d'esame troppo gravose che includono più prove e dunque richiedono più tempo per la preparazione degli stessi, oltre al fatto che sempre a loro parere la mole dei programmi teorici presente in quasi tutti le discipline della laurea magistrale in ingegneria Meccanica risulta elevata. Tuttavia, occorre evidenziare che un'altra possibile causa potrebbe essere legata alla dedizione degli studenti sia nella fase di studio degli esami che di preparazione della tesi che porta ad uno studio più lento ma di qualità più elevata.

	Punteggio degli esami (medie)	Voto di laurea (media)
PoliBa LM Mecc.	27,4	108,2
PoliBa LM Ing.	27,6	108,7
Italia LM Mecc.	27,2	106,4

Esaminando i dati sulla riuscita negli studi, si riscontra un trend analogo alla scorsa annualità; infatti, il punteggio medio negli esami (27,4) è simile alla media effettuata su tutti gli studenti delle magistrali di Ingegneria del Politecnico di Bari (27,6) ed è leggermente superiore a quanto registrato alivello nazionale nelle magistrali di meccanica (27,2), confermando il trend dell'anno precedente.

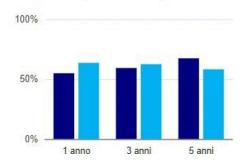

Il voto di laurea risulta in media più basso (108,2) di quello delle magistrali di ingegneria del Politecnico di Bari (108,7, in discesa rispetto all'anno scorso) ma comunque in lieve aumento rispetto all'annualità precedente e più alto di quello registrato a livello nazionale nelle magistrali di meccanica (106,4) a conferma delle migliori performance locali.

Per gli iscritti al PoliBa nel CdS magistrale in Ing. Meccanica, si evidenzia un decremento del ritardo alla laurea da 1,3 anni della scorsa annualità ad 1,2 rispetto all'annualità corrente; mentre per gli studenti iscritti al PoliBa in un CdS magistrale in Ingegneria si evidenzia un incremento del ritardo da 1 a 1,1. Resta invariato invece, per gli iscritti in Italia a un CdS magistrale in Ing. Meccanica un ritardo alla laurea di 1 anno.

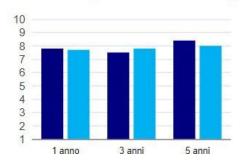

	PoliBa LM Mecc.	PoliBa LM Ing.	Italia LM Mecc.
Decisamente sì	28,3	43,6	45,2
Più sì che no	63,7	49,7	46,3

Anche dal punto di vista del soddisfacimento globale, quello degli studenti del PoliBa iscritti al CdS magistrale in Ing. Meccanica è in crescita rispetto all'annualità scorsa (92% contro 87,6%). Esso resta minore di quello degli studenti del PoliBa iscritti a un CdS magistrale in Ing. Meccanica (93,3%) ma maggiore rispetto a quello nazionale degli iscritti a un CdS magistrale in Ing. Meccanica (91,5%).

Gli studenti di Ing. Meccanica LM del PoliBa che si iscriverebbero allo stesso CdS sono meno rispetto a quelli della media di Ateneo, oltre che a quelli sull'intero territorio italiano.


Tasso di occupazione⁽¹⁾

	1 anno	3 anni	5 anni
corso	89,6%	95,5%	96,0%
Ateneo	87,8%	94,4%	96,3%


Il tasso di occupazione è molto buono se comparato con l'Ateneo, in linea con l'anno precedente.

Occupati che, nel lavoro, utilizzano in misura elevata le competenze acquisite con la laurea

	1 anno	3 anni	5 anni
corso	54,9%	59,3%	67,4%
Ateneo	63,6%	62,5%	58,2%

Soddisfazione per il lavoro svolto (medie, scala 1-10)

	1 anno	3 anni	5 anni
corso	7,8	7,5	8,4
Ateneo	7,7	7,8	8,0

Gli studenti laureati in Ing. meccanica al Politecnico di Bari che nel lavoro utilizzano in misura elevata le competenze acquisite con la laurea sono circa il 9% in meno rispetto agli altri studenti del Politecnico a 1 anno dalla laurea. Tuttavia, la maggior parte degli studenti è abbastanza soddisfatto per il lavoro svolto, in linea con l'indice di gradimento dell'intero Ateneo.